Product Information

VESTAKEEP® 4000 CC20

CERAMIC-FILLED (20%), HIGH VISCOSITY POLYETHER ETHER KETONE

VESTAKEEP® 4000 CC20 is a ceramic-filled (20%) polyether ether ketone for injection molding and extrusion.

The semi-crystalline polymer features superior mechanical, thermal, and chemical resistance. Parts made from VESTAKEEP* 4000 CC20 are of low flammability.

VESTAKEEP* 4000 CC20 can be processed on common injection molding machines for thermoplastics.

We recommend a melt temperature of 380° C to 400° C during the injection molding process. The mold temperature should be in a range of 160° C to 200° C, preferably 180° C.

VESTAKEEP® 4000 CC20 is supplied as cylindrical pellets in 25 kg boxes with moisture-proof polyethylene liners.

Inside the original and undamaged packaging, the product has a shelf life of at least 2 years when stored in dry rooms at temperatures not exceeding 30°C.

Pigmentation may affect the values.

For information about processing of VESTAKEEP* 4000 CC20, please follow the general recommendations in our brochure "VESTAKEEP* PEEK Processing Guidelines".

The values presented are typical or average values, they do not constitute a specification.

FOR FURTHER INFORMATION PLEASE CONTACT US AT <u>EVONIK-HP@EVONIK.COM</u> OR VISIT OUR PRODUCT AT <u>WWW.INDUSTRIAL.VESTAKEEP.COM</u>

Key Features

Industrial Sector

Automotive and Mobility, Industry and Engineering

Processing

Injection molding, Extrusion

Delivery formPellets, Granules

Resistance to

Heat (thermal stability), Fire / burn

Mechanical properties ISO	dry	Unit	Test Standard
Tensile modulus	4300	MPa	ISO 527
Tensile strength	95	MPa	ISO 527
Yield stress	95	MPa	ISO 527

Yield strain	5	%	ISO 527
Stress at break	75	MPa	ISO 527
Nominal strain at break, tB	20	%	ISO 527
Charpy impact strength, +23°C	N	kJ/m²	ISO 179/1eU
Charpy notched impact strength, +23°C	7	kJ/m²	ISO 179/1eA
Type of failure	С	-	-
Charpy notched impact strength, -30°C	7	kJ/m²	ISO 179/1eA
Type of failure	С	-	-
Thermal properties	dry	Unit	Test Standard
Melting temperature	340	°C	ISO 11357-1/-3
Glass transition temperature, DSC	153	°C	ISO 11357-1/-2
Temp. of deflection under load A, 1.80 MPa	155	°C	ISO 75-1/-2
Temp. of deflection under load B, 0.45 MPa	210	°C	ISO 75-1/-2
Vicat softening temperature A, 10 N, 50 K/h	335	°C	ISO 306
Vicat softening temperature B, 50 N, 50 K/h	305	°C	ISO 306
Coeff. of linear therm. expansion, 23°C to 55 °C, parallel	45	E-6/K	ISO 11359-1/-2
Melting Temperature	340	°C	ASTM D 3418
			T . C I . I
Physical properties	dry	Unit	Test Standard
Density	1490	kg/m³	ISO 1183
Water absorption	0.4	%	Sim. to ISO 62
Moisture content	0.02	Gew%	ISO 15512
Density	1490	kg/m³	ASTM D 792
Duraina Dahau	4	Heir	Task Considerat
Burning Behav.	dry	Unit	Test Standard
Burning behav. at 1.5 mm nom. thickn.	V-0	class	IEC 60695-11-10
Thickness tested	1.6	mm	-

Electrical properties	dry	Unit	Test Standard
Relative permittivity, 1MHz	3.8	-	IEC 62631-2-1
Dissipation factor, 1MHz	200	E-4	IEC 62631-2-1
Rheological properties	dry	Unit	Test Standard
Melt volume-flow rate, MVR	10	cm³/10min	ISO 1133
Temperature	380	°C	-
Load	5	kg	-
Molding shrinkage, parallel	0.7	%	ISO 294-4, 2577
Molding shrinkage, normal	1.0	%	ISO 294-4, 2577
Polymer analytics	dry	Unit	Test Standard
Ash content	19.7	%	ISO 3451
Test specimen production	dry	Unit	Test Standard
Injection Molding, melt temperature	385	°C	ISO 294
Injection Molding, mold temperature	180	°C	ISO 294
Injection Molding, injection velocity	200	mm/s	ISO 294
Injection Molding, pressure at hold	120	MPa	ISO 294

Characteristics

ApplicationsElectrical and Electronical

Special Characteristics

Semi-crystalline, High heat resistant, High viscosity

Color

Natural color

Chemical Resistance

General chemical resistance

Chemical Media Resistance

Acids

Acetic Acid (5% by mass) (23°C)

Citric Acid solution (10% by mass) (23°C)

- ✓ Hydrochloric Acid (36% by mass) (23°C)
- X Nitric Acid (40% by mass) (23°C)
- ✓ Sulfuric Acid (5% by mass) (23°C)
- ✓ Chromic Acid solution (40% by mass) (23°C)

Bases

- ✓ Sodium Hydroxide solution (35% by mass) (23°C)
- ✓ Sodium Hydroxide solution (1% by mass) (23°C)
- ✓ Ammonium Hydroxide solution (10% by mass) (23°C)

Alcohols

- ✓ Isopropyl alcohol (23°C)
- ✓ Methanol (23°C)
- ✓ Ethanol (23°C)

Hydrocarbons

- ✓ n-Hexane (23°C)
- ✓ Toluene (23°C)
- ✓ iso-Octane (23°C)

Ketones

✓ Acetone (23°C)

Ethers

✓ Diethyl ether (23°C)

Mineral oils

- ✓ SAE 10W40 multigrade motor oil (23°C)
- ✓ Insulating Oil (23°C)

Standard Fuels

- ✓ Standard fuel without alcohol (pref. ISO 1817 Liquid C) (23°C)
- ✓ Standard fuel with alcohol (pref. ISO 1817 Liquid 4) (23°C)
- ✓ Diesel fuel (pref. ISO 1817 Liquid F) (23°C)

Salt solutions

- ✓ Sodium Chloride solution (10% by mass) (23°C)
- ✓ Sodium Hypochlorite solution (10% by mass) (23°C)
- ✓ Sodium Carbonate solution (20% by mass) (23°C)

- ✓ Sodium Carbonate solution (2% by mass) (23°C)
- ✓ Zinc Chloride solution (50% by mass) (23°C)

Other

- ✓ Ethyl Acetate (23°C)
- ✓ Hydrogen peroxide (23°C)
- ✓ Ethylene Glycol (50% by mass) in water (108°C)
- ✓ Water (23°C)
- ✓ Deionized water (90°C)

Rheological calculation properties	dry	Unit	Test Standard
Min. mold temperature	160	°C	-
Max. mold temperature	200	°C	-
Min. melt temperature	380	°C	-
Max. melt temperature	400	°C	-

This information and all technical and other advice are based on Evonik's present knowledge and experience. However, Evonik assumes no liability for such information or advice, including the extent to which such information or advice may relate to third party intellectual property rights. Evonik reserves the right to make any changes to information or advice at any time, without prior or subsequent notice. Evonik disclaims all representations and warranties, whether express or implied, and shall have no liability for, merchantability of the product or its fitness for a particular purpose (even if Evonik is aware of such purpose), or otherwise. EVONIK SHALL NOT BE RESPONSIBLE FOR CONSEQUENTIAL, INDIRECT OR INCIDENTAL DAMAGES (INCLUDING LOSS OF PROFITS) OF ANY KIND. It is the customer's sole responsibility to arrange for inspection and testing of all products by qualified experts. Reference to trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used.

* is a registered trademark of Evonik Industries AG or one of its subsidiaries

Evonik Operations GmbH Smart Materials High Performance Polymers 45772 Marl / Germany Tel: +49 2365 49-9878 evonik-hp@evonik.com

www.plastics-database.com

